Imputation methods for quantile estimation under missing at random

نویسندگان

  • Shu Yang
  • Jae-Kwang Kim
  • Dong Wan Shin
چکیده

Imputation is frequently used to handle missing data for which multiple imputation is a popular technique. We propose a fractional hot deck imputation which produces a valid variance estimator for quantiles. In the proposed method, the imputed values are chosen from the set of respondents and are assigned with proper fractional weights that use a density function for the working model. In addition, we consider a nonparametric fractional imputation method based on nonparametric kernel regression, avoiding a parametric distribution assumption and thus giving more robustness. The resulting estimator can be called nonparametric fractionally imputation estimator. Valid variance estimation is also discussed. A limited simulation study compares the proposed methods favorably with other existing methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Technique of Multiple Imputation in Nonparametric Quantile Regression

In this study, we consider the nonparametric quantile regression model with the covariates Missing at Random (MAR). Multiple imputation is becoming an increasingly popular approach for analyzing missing data, which combined with quantile regression is not well-developed. We propose an effective and accurate two-stage multiple imputation method for the model based on the quantile regression, whi...

متن کامل

Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons

Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...

متن کامل

Kernel Estimation of Distribution Functions and Quantiles with Missing Data

A distribution-free imputation procedure based on nonparametric kernel regression is proposed to estimate the distribution function and quantiles of a random variable that is incompletely observed. Assuming the baseline missing-at-random model for nonrespondence, we discuss consistent estimation via estimating the conditional distribution by the kernel method. A strong uniform convergence rate ...

متن کامل

Multiple imputation in quantile regression.

We propose a multiple imputation estimator for parameter estimation in a quantile regression model when some covariates are missing at random. The estimation procedure fully utilizes the entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n consistent and asymptotically normal. To protect against possible model misspecification, we further propose a...

متن کامل

تحلیل مشاهدات گمشده در مطالعه اثر دوزهای مختلف مکمل ویتامین D بر مقاومت به انسولین در دوران بارداری

Introduction: The aim  of  this  study  was to impute missing data  and  to compare the effect  of  different doses of  vitamin D supplementation on  insulin resistance during  pregnancy. Methods: A clinical trial  study   was done on 104  women  with diabetes and gestational age less than 12 weeks between 1391 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013